Heating circuit and solar controller

grandis 650 HK

Hydraulic layouts

English version of original German installation and operating instructions

Version: 1.4 August 2017 This manual is designed to help you use the controller properly, safely and economically.

Target group

This manual is addressed to all persons who carry out any of the following tasks:

- Installing the controller
- Connecting the controller
- Putting the controller into operation
- Setting the controller
- Maintaining the solar power system
- Eliminating faults on the controller and the solar power system
- Disposing of the controller
- These persons must have the following knowledge and skills:
- Knowledge about establishing electrical connections
- Knowledge about the hydraulic operation of solar power systems
- Knowledge of the applicable regulations at the point of use and the ability to apply them

These persons must have read and understood the contents of this manual.

Availability

This manual is part of the controller. Always keep it in an easily accessible location. Include this manual with the controller should the controller change hands.

If this manual gets lost or becomes unusable, you can contact the manufacturer for a new copy.

Table of contents

1	Assignment of the terminals to the system components	4
2	Hydraulic layouts – heating circuit	5
2.1	One heating circuit	
2.2	Two heating circuits	6
2.3	Additional heating circuits via flex 400 modules (external assignment)	7
2.4	Priority charging of the process water area	10
2.5	Hydraulic layout 000.00	11
3	Hydraulic layouts - solar	12
3.1	Hydraulic layouts 110.00, 111.00, 112.00	12
3.2	Hydraulic layouts 210.01, 211.01, 212.01	13
3.3	Hydraulic layouts 210.02, 211.02	15
3.4	Hydraulic layouts 120.01, 121.01, 122.01	16
3.5	Hydraulic layouts 120.02, 121.02, 122.02	17
4	Options	18
4.1	Energy yield	
4.2	Multi-function controller	19
5	Example layouts	20
6	Combination possibilities	22

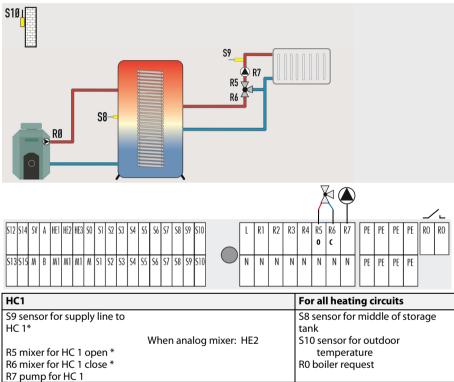
1 Assignment of the terminals to the system components

The connections in the following table are options that may be used in all hydraulic layouts:

Terminal	Use								
S1 to S10	Connections for PT1000 temperature sensor								
S0 / M	Radiation sensor input (white core of the radiation sensor at S0, red core at M)								
S4 / S4	Temperature sensor of the collector return line for the "Energy yield measurement" function								
S13 / 5V	Flow sensor for the "Yield measurement 1" function								
S15 / 5V	Flow sensor for the "Yield measurement 2" function								
S14 / S15 5V / M	VFS (vortex flow sensor) for the "Flow monitoring" function "Flow" on S14, "Temperature" on S15. Further details can be found in the VFS manufacturer's documentation.								
S12 / S13 5V / M	VFS (vortex flow sensor) for the "Flow monitoring" function "Flow" on S12, "Temperature" on S13. Further details can be found in the VFS manufacturer's documentation.								
A / B	RS-485 interface (ProBusX) Make sure that the polarity of the bus connection is not mixed up (A-A, B-B). Use paired twisted-conductor cables for connection.								
HE 1/ M 1	Power control for high-efficiency pump (HE pump) 1 HE1=Signal M1=GND 230 V power supply for the pump via switching output R1.								
HE 2/ M 1	Power control for high-efficiency pump (HE pump) 2 HE2=Signal M1=GND 230 V power supply for the pump via switching output R2.								
HE 3/ M 1	Power control for high-efficiency pump (HE pump) HE2=Signal M1=GND								
S12 S14 5V A HE1 HE2 HE3	S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 L R1 R2 R3 R4 R5 R6 R7 PE PE<								

S13 S13 S13 M M1 M1 M S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 N N N N N N N N N N N PE PE PE PE PE	L																																
	9	513	\$15	M	B	M1	M1	W1	M	S1	S2	\$3	S4	S5	S6	S7	S8	S9	\$10	\bigcirc	N	N	N	N	N	N	N	Ν	PE	PE	PE	PE	

Please note that the different pump manufacturers have different designations for the PWM connectors. An example with Grundfos and Wilo:

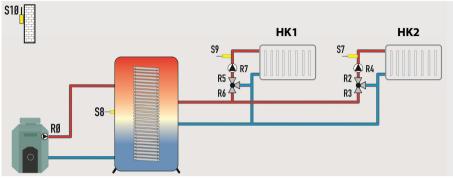

Controller	Pump m	anufacturer
terminal	Grundfos	Wilo
HE1	PWM input (brown)	PWM+
М	Signal ref. (blue)	PWM-

2 Hydraulic layouts – heating circuit

The inputs and outputs of each heating circuit can be assigned either **internally** directly in the controller or **externally** to a connected flex 400.

2.1 One heating circuit

One heating circuit, mixed


* There are no mixer and supply line sensor when unmixed

Activating heating circuit 1

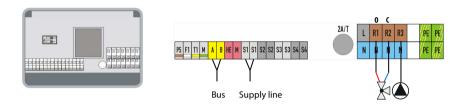
Heating	circuit 1
Heat. circuit	Mixed
Assignement	Int. 1
Heating Curve	
Mixer	
Room sensor 1	navo 400
Room sensor 7	None

2.2 Two heating circuits

Two heating circuits, mixed

		<u>`</u> _
S12 S14 SV A HE1 HE2 HE3 SO S1 S2 S3 S4 S5 S6 S7 S8 S9 S10	L R1 R2 R3 R4 R5 R6 R7 PE PE PE R0	RO
S13 S13 M B M1 M1 M1 M S1 S2 S3 S4 S5 S6 S7 S8 S9 S10	N N N N N N N PE PE PE	

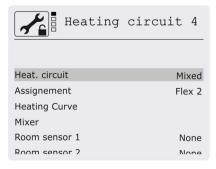
HC1	HC2	For all heating circuits
S9 sensor for supply line to HC 1*	S9 sensor for supply line to HC 2*	S8 sensor for middle of storage tank S10 sensor for outdoor
R5 mixer for HC 1 open *	R2 mixer for HC 2 open *	temperature
R6 mixer for HC 1 close * R7 pump for HC 1	R3 mixer for HC 2 close * R4 pump for HC 2	R0 boiler request
When analog mixer: HE2	When analog mixer: HE1	


* There are no mixer and supply line sensor when unmixed

Activating heating circuit 1 and heating circuit 2

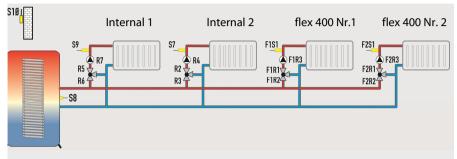
Heating	circuit 1	Heating	circuit 2
Heat. circuit	Mixed	Heat. circuit	Mixed
Assignement	Int. 1	Assignement	Int. 2
Heating Curve		Heating Curve	
Mixer		Mixer	
Room sensor 1	navo 400	Room sensor 1	None
Room sensor 7	None	Room sensor 7	None

2.3 Additional heating circuits via flex 400 modules (external assignment)


The flex 400 is designed to expand the functions of controllers from the grandis family by adding an additional heating circuit. If several flex 400 modules are connected to the bus, the DIP switches (addressing) in the flex 400 must be set by hand.

Activating heating circuit 3, assignment: flex 400 Nr. 1

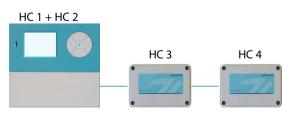
	Heating	circuit	3			
Heat. circuit Mixe						
Assigneme	ent	Fle	ex 1			
Heating Cu						
Mixer						
Room sens	sor 1	N	one			
Room sens	sor 7	N	ono			


Activating heating circuit 4, assignment: flex 400 Nr. 2

Four mixed heating circuits – internal and external assignment

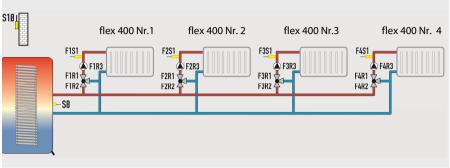
All the heating circuits (**up to 4**) can be assigned externally either partly or completely. A flex 400 module can be assigned with a mixed or an unmixed heating circuit.

Example of a hydraulic layout with 2 flex 400-modules:



Four mixed heating circuits. Assignment: 2x internal, 2x flex 400

HC1: internal 1	HC2: internal 2	HC3: flex 400 Nr. 1	HC4: flex 400 Nr. 2				
S9 sensor for supply line to HC 1	S7 sensor for supply line to HC 2	FB1S1 sensor for supply line to HC 3	FB2S1 sensor for supply line to HC 4				
R5 mixer open R6 mixer close R7 pump for HC 1	R2 mixer open R3 mixer for HC 2 close R4 pump for HC 2	F1R1 mixer open F1R2 mixer close F1R3 pump for HC 3	F2R1 mixer open F2R2 mixer close F2R3 pump for HC 4				
Common sensors and outputs for all heating circuits: S8 sensor for middle of storage tank S10 sensor for outdoor temperature							

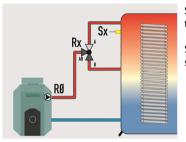

R0 boiler request

There are no mixer and supply line sensor when unmixed

Note: If the flex 400 is not programmed as a heating circuit, it can be used in addition as a multi-function controller.

Four heating circuits with external assignment Example of hydraulic layout with 4 flex 400-modules:

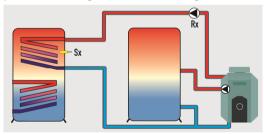
Four mixed heating circuits. Assignment: 4x flex 400


HC1: flex 400 Nr. 1	HC2: flex 400 Nr. 2	HC3: flex 400 Nr. 3	HC4: flex 400 Nr. 4				
F1S1 sensor for supply line to HC 1	F2S1 sensor for supply line to HC 2	F3S1 sensor for supply line to HC 3	F4S1 sensor for supply line to HC 4				
F1R1 mixer open F1R2 mixer close F1R3 pump for HC 1	F2R1 mixer open F2R2 mixer close F2R3 pump for HC 2	F3R1 mixer open F3R2 mixer close F3R3 pump for HC 3	F4R1 mixer open F4R2 mixer close F4R3 pump for HC 4				
Common sensors and outputs for all heating circuits: S8 sensor for middle of storage tank S10 sensor for outdoor temperature							
R0 boiler request							

There are no mixer and supply line sensor when unmixed

2.4 Priority charging of the process water area

For priority charging of the process water area you can activate the multi-function controller **HW reheating**. This function switches in parallel to the "Hot water" function. The three-way valve switches over. This results in the upper storage tank area being heated first..


Sx sensor for top of storage Rx N tank

Sensor can be freely selected

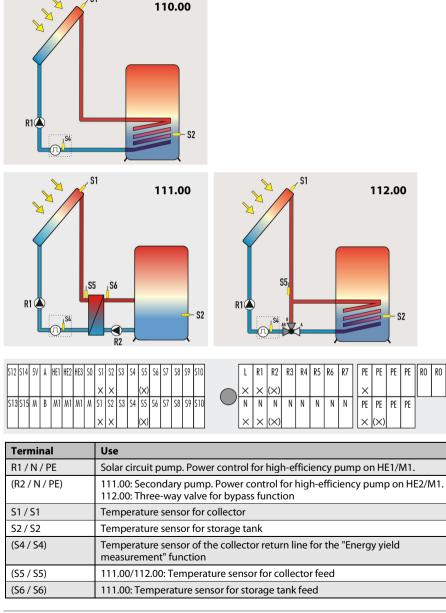
Rx MFC at output Rx

Output can be freely selected

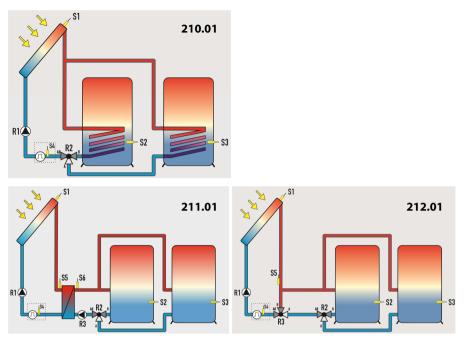
Alternatively you can use the function for actuating the process water pump. This is also possible when e.g. the hot water storage tank and buffer are separated from each other.

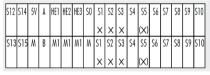
2.5 Hydraulic layout 000.00

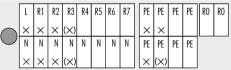
Terminal	Use
R1 + N + PE	Multi-function controller on switching output R1
R2 + N + PE	Multi-function controller on switching output R2
R3 + N + PE	Multi-function controller on switching output R3
R4 + N + PE	Multi-function controller on switching output R4
R5 + N + PE	Multi-function controller on switching output R5
R6 + N + PE	Multi-function controller on switching output R6
R7 + N + PE	Multi-function controller on switching output R7
R0 + R0	Multi-function controller on switching output R0 (potential-free normally open contact)
HE1 + M1	Multi-function controller on switching output HE1 (PWM and PWM invert)
HE2 + M1	Multi-function controller on switching output HE2 (PWM and PWM invert)
HE3 + M1	Multi-function controller on switching output HE3 (PWM and PWM invert)


In layout 000.00 you can use all outputs as multi-function controllers.

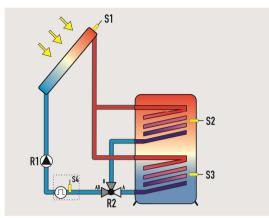
Every Flexbox has a total of 3 outputs. They all can be assigned in multi-function controllers if the Flexbox is not already assigned as a heating circuit controller.

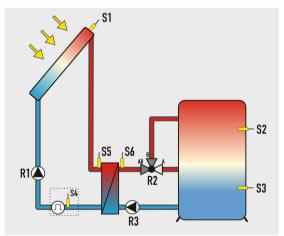

S1


3 Hydraulic layouts - solar

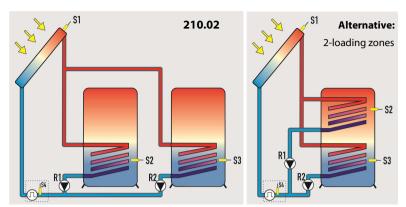

3.1 Hydraulic layouts 110.00, 111.00, 112.00

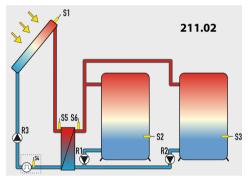
3.2 Hydraulic layouts 210.01, 211.01, 212.01





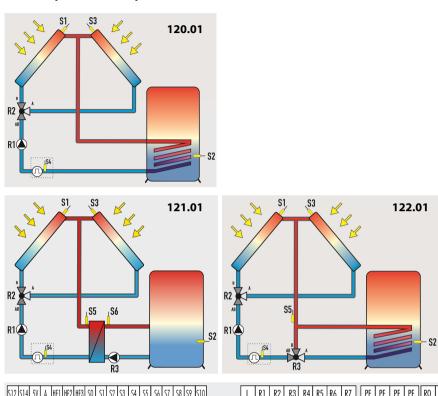
Terminal	Use
R1 / N / PE	Solar circuit pump. Power control for high-efficiency pump on HE1/M1.
R2 / N / PE	Three-way valve
(R3 / N / PE)	211.01: Secondary pump. Power control for high-efficiency pump on HE2/M1. 212.01: Three-way valve for bypass function
S1 / S1	Temperature sensor for collector
S2 / S2	Temperature sensor for storage tank 1
S3 / S3	Temperature sensor for storage tank 2
(S4 / S4)	Temperature sensor of the collector return line for the "Energy yield measurement" function
(S5 / S5)	211.01/212.01: Temperature sensor for collector feed
(S6 / S6)	211.01: Temperature sensor for storage tank feed


Alternative to 210.01: 2-loading zones



Alternative to 211.01: stratification

3.3 Hydraulic layouts 210.02, 211.02

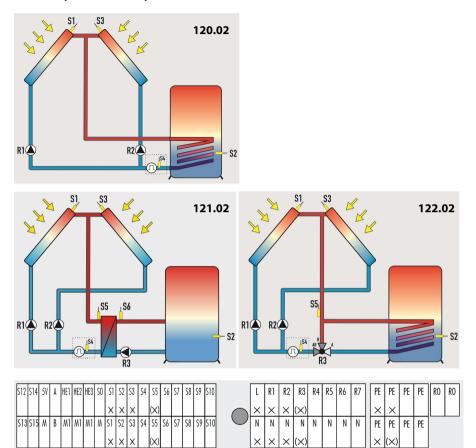


S12	S14	5V	A	HE1	HE2	HE3	SO	SI	S2	S3	S4	S5	S6	S7	S8	S9	S10	I
								х	х	х		(X)						>
S13	S15	M	B	M1	M1	M1	M	S1	S2	S3	S4	S5	S6	S7	S8	S9	S10	Ν
L								х	х	х		(X)						>

L	R1	R2	R3	R4	R5	R6	R7	PE	PE	PE	PE	RO	RO	
X	Х	×	(\times)					X	X					
N	N	N	Ν	N	N	N	Ν	PE	PE	PE	PE			
×	×	×	(×)					×	(X)					

Terminal	Use
R1 + N + PE	Pump for storage tank 1. Power control for high-efficiency pump on HE1/M1
R2 + N + PE	Pump for storage tank 2. Power control for high-efficiency pump on HE2/M1
(R3 + N + PE)	211.02: Solar circuit pump
S1 + S1	Temperature sensor for collector
S2 + S2	Temperature sensor for storage tank 1
S3 + S3	Temperature sensor for storage tank 2
(S4 / S4)	Temperature sensor of the collector return line for the "Energy yield measurement" function
(S5 / S5)	211.02: Temperature sensor for collector feed
(S6 / S6)	211.02: Temperature sensor for storage tank feed

3.4 Hydraulic layouts 120.01, 121.01, 122.01


S12	S14	5V	A	HE1	HE2	HE3	SO	SI	S2	S3	S4	S5	S6	S7	S8	S9	S10	
										х		(X)						
S13	S15	Μ	B	M1	M1	M1	M	S1	S2	S3	S4	S5	S6	S7	S8	S9	S10	
								x	x	х		(X)						

	L	R1	R2	R3	R4	R5	R6	R7	PE	PE	PE	PE	RO	RO
	\times	×	×	(\times)					\times	\times				
\mathcal{I}	Ν	N	Ν	Ν	N	N	N	Ν	PE	PE	PE	PE		
	×	×	×	(×)					×	(×)				

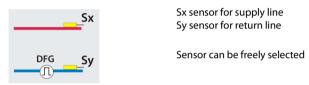
Terminal	Use
R1 + N + PE	Solar circuit pump. Power control for high-efficiency pump on HE1/M1
R2 + N + PE	Three-way valve
(R3 + N + PE)	121.01: Secondary pump. Power control for high-efficiency pump on HE2/M1 122.01: Three-way valve for bypass function
S1 + S1	Temperature sensor for collector 1
S2 + S2	Temperature sensor for storage tank
S3 + S3	Temperature sensor for collector 2
(S4 / S4)	Temperature sensor of the collector return line for the "Energy yield measurement" function
(S5 / S5)	121.01/122.01: Temperature sensor for collector feed
(S6 / S6)	121.01: Temperature sensor for storage tank feed

(

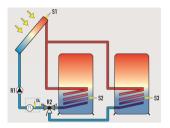
3.5 Hydraulic layouts 120.02, 121.02, 122.02

Terminal	Use
R1 + N + PE	Pump for collector 1. Power control for high-efficiency pump on HE1/M1
R2 + N + PE	Pump for collector 2. Power control for high-efficiency pump on HE2/M1
(R3 + N + PE)	121.02: Secondary pump 122.02: Three-way valve for bypass function
S1 + S1	Temperature sensor for collector 1
S2 + S2	Temperature sensor for storage tank
S3 + S3	Temperature sensor for collector 2
(S4 / S4)	Temperature sensor of the collector return line for the "Energy yield measurement" function
(S5 / S5)	121.02/122.02: Temperature sensor for collector feed
(S6 / S6)	121.02: Temperature sensor for storage tank feed

4 Options

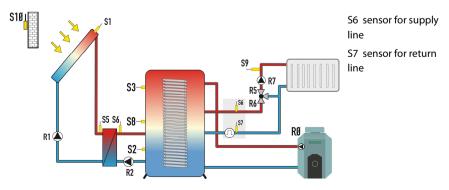

4.1 Energy yield

You can program independent energy yield measurements.


With yield measurement 1 (set as independent) and energy yield 2, it is possible to measure the energy yield in any hydraulic circuit.

This is also possible with energy yield 3 to 6 when flex 400 modules are optionally connected.

An additional flow sensor or vortex flow sensor is needed for this. This additional sensor must be installed in the hydraulic circuit which is to be measured. Note the flow sensor specifications.

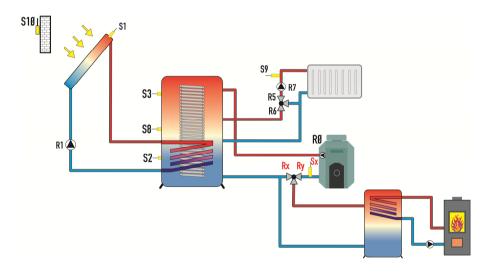

Yield measurement 1 as solar yield measurement. Example with layout 210.01:

S1 sensor for supply line S4 sensor for return line S13/5V flow sensor

The solar yield for both storage tanks will be separately determined and displayed, depending on the charging.

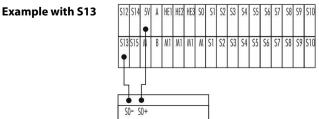
Yield measurement 1 as independent energy yield measurement. Example:

4.2 Multi-function controller


All basic layouts can be extended as required using multi-function controllers. Each free output can be assigned as a multi-function controller.

Up to 6 MFCs can be connected

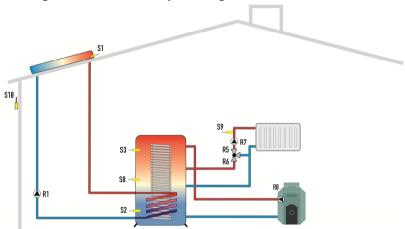
Sensor can be freely selected


For Mixer multi-function controllers you must assign 2 outputs. Example layout:

For additional information and preconfigured parameter sets go to www.prozeda.de/mfr

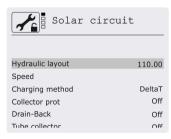
For the Yield multi-function controllers please note:

S0+ to 5V; S0- to the sensor input.

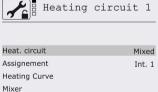

5 Example layouts

There are many different system layouts for the modular construction of solar circuits and heating circuits.

If multi-function controllers are also used, the number of combinations and variations becomes virtually limitless.

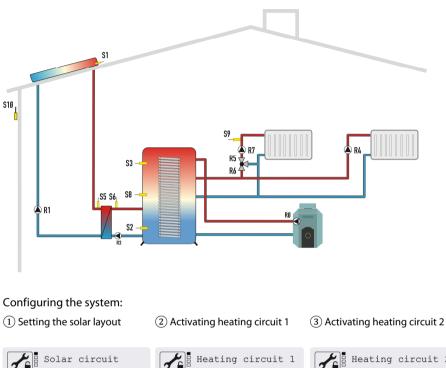

The following layouts are examples only.

1 heating circuit with hot water processing + solar

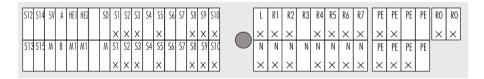


Configuring the system:

① Setting the solar layout


② Activating the heating circuit

navo 400
None


S12	S14	5V	A	HE1	HE2	SO	\$1	S2	S3	S4	S5	S6	S7	S8	59	S10
							Х	Х	Х					Х	Х	Х
S13	S15	M	B	M1	M1	M	S1	S2	53	S4	\$5	S6	S7	S8	S9	S10
							Х	Х	Х					Х	Х	X

	L	R1	R2	R3	R4	R5	R6	R7	PE	PE	PE	PE	RO	RO ×
	X	Х				X	X	×	X	Х			×	×
\bigcirc	N	N	N		N	N	N	N ×	PE	PE	PE	PE		
	\times	×				×	×	×	×	×	×			

1 mixed + 1 unmixed heating circuit, hot water processing + solar with external heat exchanger

Solar circui	t	Heating	circuit 1	Heating	circuit 2
Hydraulic layout	111.00	Heat. circuit	Mixed	Heat. circuit	Mixed
Speed		Assignement	Int. 1	Assignement	Int. 2
Charging method	DeltaT	Heating Curve		Heating Curve	
Collector prot	Off	Mixer		Mixer	
Drain-Back	Off	Room sensor 1	navo 400	Room sensor 1	None
Tube collector	∩ff	Room sensor 2	None	Room sensor 2	None

To download more examples with parameter sets go to prozeda.de/mfr.

6 Combination possibilities

	1 HC m / MFC	1 HC u / MFC	2 HC m / MFC	2 HC u / MFC	2 HC (m + u) / MFC
110.00	•/3	•/5	•/-	•/4	•/2
111.00	•/2	•/4	-/6	•/3	•/1
112.00	•/2	•/4	-/6	•/3	•/1
120.01	•/2	• /4	-/6	•/3	•/1
121.01	•/1	•/3	-/5	•/2	•/-
122.01	•/1	•/3	-/5	•/2	•/-
120.02	•/2	• /4	-/6	•/3	•/1
121.02	•/1	•/3	-/5	•/2	•/-
122.02	•/1	•/3	-/5	•/2	•/-
210.01	•/2	•/4	-/6	•/3	•/1
211.01	•/1	•/3	-/5	•/2	•/-
212.01	•/1	•/3	-/5	•/2	•/-
210.02	•/2	•/4	-/6	•/3	•/1
211.02	•/1	•/3	-/5	•/2	•/-
000.00	•/4	•/6	•/1	•/5	•/3

HC m = mixed heating circuit, HC u = unmixed heating circuit, MFC = multi-function controller

Every Flex module increases these possibilities with 1 heating circuit (mixed or unmixed) or 3 additional multi-functional controllers.

1336B-ES009-14B-E